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Abstract 

The phase-sensitive rectification method (lock-in technique) is presented and tested to serve as another evaluation method 
for temperature-modulated differential scanning calorimetrie measurements. This is done by model calculations with a 
mathematica1 computation system, using simple models of events often measured in this type of calorimeter: changes in heat 
capacity, cold crystallization, a chemical reaction and the glass transition. The advantages of the new evaluation method are: a 
lower numerical expenditure; a well-defined connection between time resolution and smoothing interval; and a reliable 
decrease in fluctuations of the results. It has furthermore been demonstrated that numerical calculations can be a powerful tool 
to test different models and their influence on the measured signal and the evaluated results. This is especially significant in 
cases, where a certain process produces non-linear distortions of the heat-flow rate signal. 0 1997 Elsevier Science B.V. 

Keywords: Cold crystallization; Glass transition; Model calculations; Reaction; Temperature-modulated differential scanning 
calorimetry (TM-DSC) 

1. Introduction 

Temperature-modulated measuring techniques has 
been introduced in differential scanning calorimetry 
(DSC) by Reading et al. [ll. There are several ade- 
quate commercial apparatus available from different 
manufactures. The respective numerical evaluation 
methods, which often are not known in detail, yield 
different results, for example ‘reversing’ and ‘non- 
reversing’ heat flow, or ‘storage’ and ‘10s~’ heat 
capacity. Usually, the evaluation of the heat-flow rate 
function measured in commercial temperature-modu- 
lated DSC (TM-DSC) is carried out by a Fourier 
analysis method [2]. 
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This method, which may be related to the attributes 
of complex numbers as well, yields at last the magni- 
tude (absolute value, amplitude) and the phase of the 
heat-flow rate as a function of time. These quantities 
constitute the basis of further calculations. 

Another evaluation method, often used to get infor- 
mation from a signal with known frequency, espe- 
cially in presence of high noise levels, is the so-called 
phase-sensitive rectification (PSR) techniques. This 
technique is used in lock-in amplifiers which are able 
to separate periodic signals from a non-periodic (or 
periodic, but with other frequenties) background 
(noise) which may have an up-to-three orders of 
magnitude higher intensity. 

The aim of this paper is to introduce this method, 
somewhat modified, in TM-DSC evaluation, test its 
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usefulness by evaluation of some simulated measure- 
ments of typical thermal events inside the sample 
and compare it with the common evaluation method. 
The influence of heat transport processes on measure- 
ments is neglected here. This is done in order to better 
see the connection between different common pro- 
cesses inside the sample and the evaluated results. 
This may be helpful for discussion of real measure- 
ments from real DSC and the evaluation method in 
question. 

2. Evaluation methods 

In TM-DSC, the temperature-time function is 

T(t) = TO + Pt + T,sin(wt) (1) 

here, Tc is the initial temperature, t the time, p the 
heating rate, w = 27r/p the angular frequency, and p 
the period. 

The corresponding heat-flow rate function Q(t), in 
the ideal case (no delay), then reads: 

Q(t) = Q,(t) + @,cos (wt) (2) 

In a real DSC, there is always a delay between the 
temperature change and the resulting heat flow caused 
by the limited heat transport leading to a phase shift 
Se,. In addition, there may be another delay (and thus 
phase shift Sr,) of the signal caused by time-consuming 
processes in the sample which does not react imme- 
diately on temperature changes. Instead of Eq. (2), we 
now have to write: 

G(t) = c&(t) + @&OS (wt - 6) (3) 

with 6 = &, + 6, (The sign of S follows from caus- 
ality, the heat tlow, which is the consequente, can only 
be after the cause, namely the temperature change.) 

Both the temperature function (1) and the corre- 
sponding heat-flow rate (3) usually have a non-peri- 
odic (‘underlying’, @J and a periodic (8) part. The 
former can be determined by ‘gliding average’ pro- 
cedures, namely the summation from t - p/2 to 
r +p/2 and division by the respective number of 
values. The periodic part is calculated by subtracting 
the underlying part from the total one. The character- 
istic quantities of TM-DSC are usually determined 
from the periodic part, so we confine ourselves in the 
following to the evaluation of this function. 

2.1. The common evaluation procedure 

The method, used in commercial TM-DSC up to 
now, proceeds from the periodic part of the heat-flow 
rate function 6(t) which is multiplied by sin (wt) and 
cos (ut), respectively, and integrated (gliding average) 
over one period: 

f+P/2 

($sin(t)) F i 1 &(t’)sin (wt’)dt’ = @,sin6 

t-p/2 

(4) 

t+p/2 

(&&(t)) E 5 / &(t’)cos (ut’), = @,cos6 

t-p/2 

(3 

From Eqs. (4) and (5), the amplitude and phase shift 
of the heat-flow signal can be calculated 

@act) = (&sin(t))2 + (~cos(~))~ (6) 

bCt) = UX%n ((~sin(t))/(~cos(t))) (7) 

The amplitude Q,(t) contains information about the 
(static) heat capacity C,(t) of the sample and possibly 
additional information from temperature-dependent 
processes in the sample. From it (with the temperature 
amplitude T,, the frequency w and the (underlying) 
heating rate /?) the ‘reversing’ component of the heat- 
flow rate is determined [ 1,3]: 

@W(r) = @u(t) - @re”(r) (8) 

The ‘non-reversing’ component is the differente 
between it and the underlying signal: 

@non(r) = @u(t) - @W(t) (9) 

The quantity 6(t) (Eq. (7)) contains both the phase 
shift related to the heat transport phenomena and that 
caused by time-consuming processes inside the sam- 
ple. The former part is usually removed by suitable 
‘calibration’ procedures, so the final output is usually 
6 sampte (t). However, a more sophisticated evaluation 
method [4] uses both the amplitude and phase infor- 
mation to calculate the complex heat capacity, where 
the real and imaginary part are the ‘storage’ and ‘10s~’ 
heat capacities, respectively. 
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Fig. 2. Temperature (T(r)) and heat-flow rate (Q(r)) signal 
together with the two series of integration intervals for the PSR 
evaluation. 

This looks complicated; however, it is not: there are 
two series of n integration intervals (marked with 
numbers and letters, respectively) (see Fig. 2), which 
are shifted towards one another by half an integration 
interval. Within these series, we get the same value of 
the integral apart from the alternating sign (which is 
indicated by different subscripts), as should be in this 
techniques. The abscissa was selected as the midpoint 
of the respective integration interval. To come to the 
same abscissa for both series, the mean value of two 
neighboring integrals of, e.g. the first series must be 
calculated first (cf. Fig. 2): 

(13a) 

12+g=;(Ii ((2,~I)$)-I,((2n+ 1);)) 

(n = 2,4,6,...) (13b) 

Again, both these mean integrals differ only in sign. 
From these results the desired quantities, amplitude 
and phase shift at the respective abscissa values can 
easily be calculated: 

We get one value of amplitude and phase shift, 
respectively, per integration interval and, conse- 
quently, two per period in this case (see, e.g. 
Fig. 4). The integration interval can even be chosen 
wider by calculating the proper average value from 
the integrals (Eqs. (12a),( 12b),( 12c) and (12d)). 
Further calculations have shown that from higher 
harmonics, (2w, 3w, . .) only the odd ones contri- 
bute to the above integrals and thus to amplitude and 
phase shift. 

3. Model calculations of different thermal events 

To test the reliability of the evaluation method, it is 
more useful to start from ‘synthetic’ measured curves 
obtained from numerical calculations for different 
well-known events rather than from real measure- 
ments, which often contain unknown influences 
from the apparatus. In a second step, the test with 
real measurements of known systems may be carried 
out. 

For our calculations, we chose measurement param- 
eters normally used in real TM-DSC, that is to say a 
heating rate of 0.5 to 2 K min-‘, a modulation period 
of 50 to 60 s, a modulation amplitude of 0.5 to 1 .O K, a 
sample heat capacity of 10 mJ K-’ and a data collec- 
tion rate of 1 s-‘. 

The expected heat-flow rate curve was calculated 
according to the theoretical model in question. Al1 
calculations were done with a mathematica1 computa- 
tion system (MAPLE V Rel. 4, Waterloo Maple). The 
influence of heat-transport phenomena has not been 
taken into account, so only the influence from sample 
processes contribute to the results. 

3.1. Injluence of a non-constant heat capacity 

In reality, the heat capacity is a weak function of 
temperature, inserting such a dependence into the 
heat-flow equation leads, however, to rather compli- 
cated integrals (cf. Eqs. (12a),( 12b),(12c) and (12d)), 
which cannot be solved analytically. So we used, 
instead of the real temperature-time function (l), only 
the underlying part of it as a 0th approximation. This 
yields a linearly time-dependent heat capacity 

C(T(t)) = Co + qt (164 
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and, with it, the following heat-flow rate function: 

Q(t) = (Co + c,t)(B + wí”,cos (wt - 6)) (16b) 

The gliding average integral then reads in the 1st 
(linear) approximation: 

r+P/2 

@” E 

.I 

@(t’)dt’ = Pp(Co +  c,t) 

1-P/2 

+ 2c,Tap(cos (g,)sin (F)cos5 

- cos2 ( ) Ft si&) (17) 

This is again a sum of a non-periodic (underlying) 
and a periodic part. In the case of constant heat 
capacity (cl = 0), only the first augend on the right 
side remains, it is equal to the underlying heat-flow 
rate in Eq. (3). Otherwise a constant correction term 
appears and, in addition, a periodic part with period p 
and an amplitude proportional to the heat capacity 
change cl. The respective results from both evaluation 
methods are shown in Figs. 3 and 4. The periodic 
fluctuations of Qu are clearly visible in both cases. 
With the common evaluation (Fig. 3), both Gp, and 6 
fluctuate too, but with the double frequency. In the 
case of the PSR evaluation method, such fluctuations 
are not visible as there is only one value per fluctuation 
period which, however, is almost the same for both 
methods (see Figs. 3 and 4). 

400 Time / s 500 

Fig. 3 Periodical (G(r)) and underlying (G”(t)) heating rate, 
amplitude (Ga(t)) and phase shift (6) in the case of a time- 
(temperature)-dependent heat capacity, calculated with the com- 
mon evaluation method. 

Fig. 4. Periodical (6(t)) and underlying (Q”(I)) heating rate, 
amplitude (Ga(f)) and phase shift (6) in the case of a time- 
(temperature)-dependent heat capacity, calculated with the PSR 
evaluation method. 

3.2. Injluence of a non-constant phase shifr 

A change of phase shift may appear by the changing 
heat-transfer conditions, or by certain other processes 
in the sample. Using the same procedure as explained 
in Section 3.1, with a linear approximation of the 
phase functions, sin S and cos 6: 

s(t) = s, + d,t 

sin s(t) = sin 60 + dl icos S0 

cos s(t) = cos 6, - dl tsin & 

the gliding average integral reads: 

Va) 

(18b) 

(18~) 

tiPI2 

@” = 

s 

@(t’)dt’ = PCp + CpT,dlcos SO 

r-Pi2 

- 2CT,pdl (cos(zf)sin (zt)sin&, 

+ cos2 ( > ;t COSS~) (19) 

The result is similar to that of Eq. (17), again we 
have a periodic component in addition to the expected 
underlying heat-flow rate function which, in addition, 
is modified by the second augend. The result in the 
case of common evaluation equals that of Fig. 3 in 
principle, again this fluctuation is clearly visible and 
both phase and amplitude fluctuate around the 
expected values. The respective result from PSR 
evaluation is given in Fig. 5. 



214 G.WH. Höhne/Thermochimica Acts 304/305 (1997) 209-218 

002.: , 
5 

i . <, 
1 -j< ’ . %Ul 

190 ‘” 200ö - “’ 360 : :’ -400 Time / s 500 

Fig. 5. Periodical (6(t)) and underlying (c-&(t)) heating rate, 
amplitude (G=(t)) and phase shift (6) in the case of a time- 
(temperature-) dependent phase shift, calculated with the PSR 
evaluation method. 

3.3. The cold-crystallisation proces 

This process is wel1 known from several glasses, 
which crystallize spontaneously some 10 K above the 
glass transition, often together with a heat-capacity 
change with the heat capacity of the solid being lower 
than that of the liquid state. Such a process is diffusion 
controlled and needs for that reason time, whereas 
smal1 temperature changes do not influence the visc- 
osity to any extent. That is why we simulated this 
event by a (Gauss-shaped) exothermic heat-flow rate 
function which is added to that from a heat capacity 
function which decreases in proportion to the degree 
of conversion from liquid to solid. The results are 
represented in Fig. 6. The amplitude and phase fluc- 
tuate in the region of the cold-crystallization as 
expected from the calculations of Sections 3.1 and 
3.2, nevertheless the average values of the amplitude 
reflect the assumed heat capacity change while those 
of the phase change remain zero. This result is as 
expected for such a model. 

3.4. Chemical reaction 

For the sake of simplicity, we simulated a lst-order 
elementary reaction which is described by the follow- 
ing Arrhenius-type equation: 

dc _ = _AeXp(-Ea/RT(‘))C(t) 
dt 

here, c is the concentration of reactant, A the pre- 

Fig. 6. Periodical (6(t)) and underlying (c&(t)) heating rate, 
amplitude (Ga(t)) and phase shift (6) in the case of a ‘cold 
crystallization’, calculated with the PSR evaluation method. 

exponential factor, E, the activation energy, R the gas 
constant, and T the temperature. 

The change (decrease) of the reactant concentration 
depends on the temperature and on the present con- 
centration, which changes in time. The heat produc- 
tion and, thus, the heat-flow rate from the sample is 
proportional to the concentration-change rate and thus 
a function of temperature and time. Solving the dif- 
ferential Eq. (20) of the lst-order reaction in the case 
of time-dependent temperature gives: 

$ (t) = cdexp - 1 Aexp(pEalRT(‘))&’ 

0 
x exp(-WWC (21) 

The respective heat flow follows from the known 
initial concentration co and from the total heat of 
reaction, which can easily be determined from the 
total heat-flow rate curve by integration. 

The result of the calculation of such a reaction is 
represented in Figs. 7 and 8. As expected the influence 
of heat of reaction is only found in the underlying 
heat-flow rate, and the amplitude is constant apart 
from some fluctuations in the region, where the reac- 
tion heat-flow rate has a large curvature. The cause is 
similar to that of Section 3.1, but in this case QU 
(instead of C) is changed during a period. Very 
unexpected, however, is the result of a non-zero phase 
shift in the reaction region. As the reaction rate in 
every moment is a function of the present temperature 
and concentration alone, there should not be any delay 
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Fig. 7. Periodical (4(t)) and underlying (Q”(t)) heating rate in the 
case of a lst-order reaction, calculated with the PSR evaluation 
method. 
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Fig. 8. Underlying (O.(t)) heating rate, amplitude (Ga(t)) and 
phase shift (6) in the case of a 1 st-order reaction, calculated with 
the PSR evaluation method. 

in heat production and, consequently, no phase shift 
between temperature and heat-flow rate signal. Never- 
theless, a phase shift results from the calculation 
which can only be explained by non-linear distortion 
of the symmetrie (sine-shaped) input signal to an 
asymmetrie heat-flow rate output signal, caused by 
the continuous decrease of the concentration in time 
which in turn decreases the reaction rate during a 
temperature cycle. The asymmetrie distortion of the 
output signal causes a phase shift which, in this case, 
would lead to wrong conclusions, if we were to 
calculate, say, a complex sample heat capacity from 
these results. The influence of non-linear distortions 
on the signal of a TM-DSC and on the evaluation 

results has to be investigated in detail in the future, 
because such distortions cannot be excluded in every 
day research with this apparatus and could lead to 
wrong conclusions. 

3.5. The glass process 

This process describes a transition of amorphous 
materials from a non-equilibrium solid state to an 
equilibrium liquid state. Several theoretical models 
to describe this process are known from the literature. 
We chose two rather different approaches to test our 
evaluation method, namely a description which starts 
from a complex heat-capacity function and another 
which proceeds from a differential equation. As these 
models are only used to investigate the influence on 
the results of our evaluation method, we desist from 
entering further into details of the background of the 
respective theories but simply apply them in the 
calculation. 

3.5.1. The differential equation approach 
One model starts from ‘holes’ which can be ‘solved’ 

in the amorphous material and make a contribution to 
the enthalpy of this amorphous material. The change 
of the number of holes with temperature implies a 
corresponding change of the enthalpy with tempera- 
ture (i.e. a slope change) and thus a change of the heat 
capacity: 

schol, = Ehole $ (22) 

The quantitative description of the hole model reads 
as follows [5]: 

dN 
- 1 (N’(t) - N(t)) dt - 7(t) (23) 

The rate of change of the number of holes is 
proportional to the differente between the equilibrium 
number N* and the real number N(t) at a certain 
moment. The reciprocal proportionality constant is 
the relaxation time 7. fl is linearly, and r exponen- 
tially dependent on temperature within the glass-tran- 
sition region and the following is valid: 

N*(T) = N; + n;T 

7(t) = raexp (E,/RT) 

(24) 

(25) 
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here, n; is the proportionality factor and E, the 
activation energy) 

Inserting Eqs. (24) and (25) into Eq. (23) results in 
a differential equation, where the change rate of N 
(and thus the heat capacity) is a rather complex 
function of time- and temperature-dependent quanti- 
ties. Nevertheless, this equation can be solved numeti- 
cally in the case of TM-DSC. This is done by starting 
at a certain moment at a temperature above the glass 
transition, where the number of holes is in equilibrium 
(Eq. (24)), and calculating its change at that tempera- 
ture for one time step (Eq. (23)). 

Afterwards, the number of holes in every following 
moment can be calculated by steps, and from 
Eqs. (23) and (22) the heat capacity in question or 

Fig. 9. Periodical (6(t)) and underlying (G”(t)) heating rate in the 
case of a glass transition on cooling, calculated with the PSR 
evaluation method, using the ‘hole model’. 
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Fig. 10. Underlying (G.(t)) heating rate, amplitude (Ga(t)) and Fig. 12. Underlying (G”(t)) heating rate, amplitude (Ga(t)) and 
phase shift (6) in the case of a glass transition on cooling, phase shift (6) in the case of a glass transition on heating, 
calculated with the PSR evaluation method, using the ‘hole model’. calculated with the PSR evaluation method using the ‘hole model’. 

the respective heat-flow rate. The result of this calcu- 
lation is shown in Figs. 9-12 for a cooling and sub- 
sequent heating run. Amplitude and phase shift 
changes as expected from theoretical and experimen- 
tal knowledge. The smal1 non-zero phase shift in the 
liquid region (at high temperatures) is an artefact, 
which is caused by the numerical, stepwise, calcula- 
tions. In the heating run, the so-called ‘overheating’ or 
‘enthalpy-relaxation’ peak is clearly visible. 

The fluctuations of the underlying heat-flow rate in 
the transition region are distinctly larger than in the 
examples before, the reason being that both phase and 
heat capacity changes in this region together lead to an 
enhanced influence on QU. 

;-p___ n ~~ 1” ^ ” 

__n’>_,, 1500, Time 1s “2000 “_ i, .” 

Fig. 11. Periodical (&(t)) and underlying (e”(t)) heating rate in 
the case of a glass transition on heating, calculated with the PSR 
evaluation method, using the ‘hole model’. 
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3.5.2. The complex heat capacio approach corresponding heat-flow rate reads: 
Another very simple model of the dynamic glass 

transition starts from a complex heat capacity in the 
w-space with the following real (C’) and imaginary 
(C”) parts [6]: 

Q(t) = T,w( C’cos wr - C”sin WÍ-) (27) 

The respective calculation results are shown in 
Figs. 13 and 14, they contain the expected be- 
haviour. The underlying heat-flow rate is almost 
zero, because of the definition (Eq. (27)) which 
does not contain that part of the heat-flow rate 
function which originates from the underlying 
heating rate, but only the dynamic part. Again, fluc- 
tuations in the underlying heat-flow rate function are 
visible in the region where the heat capacity and phase 
change. 

AC 
C’(w) = Co + 1 + (wr)2 

ACwt 
C”(W) = 1 + (wT)2 

(264 

(26b) 

where T(T) is the same function as in Eq. (25). The 

Fig. 13. Periodical (8(t)) and underlying (@“U(f)) heating rate in 
the case of a glass transition on heating, calculated with the PSR 
evaluation method, using a given complex heat capacity. 
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Fig. 14. Underlying (e.(t)) heating rate, amplitude (Ga(t)) and 
phase shift (6) in the case of a glass transition on heating, 
calculated with the PSR evaluation method using a given complex 
heat capacity. Evaluation of TM-DSC measurements by the phase- 
sensitive rectification technique 

4. Conclusions 

The advantages of the PSR method are: 

(i) There are only two values of amplitude and 
phase per period and the distance between them 
reflects the real resolution in time, whereas the 
gliding average method (Section 2.1) results in as 
many values as measuring points (usually 1. . .4 per 
second) which pretends a resolution in time (often 
p/50) far from the theoretical resolution which 
cannot be smaller than the integration interval 
(often p). 
(ii) The smaller integration interval (at least in the 
2nd set of integrals Eqs. (12a),(12b),(12c) and 
(12d) leads to a resolution (At = p/2) which is 
better than for the common method (At = p), 
nevertheless the corresponding band width 
(Eq. (10)) is Av = 2/p = 2v (or Aw = 2~). This 
covers the frequency range from zero to 2w, which 
is indeed broader than in the common case (where 
Aw = w); but, as the 2nd harmonie is totally 
suppressed in every case, this does not matter. The 
increase of noise (by a factor of two) usually does 
not matter as well. 
(iii) The bandwidth can be reduced by choosing a 
larger (than p/2) integration time interval, to 
decrease the influence of non-linear distortions 
which produce a certain Aw-distribution around 
the frequency in question. Indeed the time resolu- 
tion is decreased too, but the quantitative connec- 
tion is wel1 known from Eq. (10) and cannot lead 
to any false interpretation. 
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(iv) The fluctuations of Qa and 5, caused by 
changes of the heat capacity and the phase, 
respectively, are suppressed for the most part, 
because there is only one data point per fluctuation 
period (see Section 3.1) already representing the 
mean value of that interval, so an additional 
smoothing is not necessary. 
(v) The numeric expense of evaluation is reduced 
considerably. 

To sum up, there is indeed no need to change the 
common evaluation method, as it works correctly. 
However, the very large number of values, which this 
method yields, suggests a wrong information density 
and requires considerably more evaluation expense. 
The PRS method, on the other hand, comes to the 
same results faster and reflects immediately the proper 
time resolution. Choosing wider integration intervals 
(within the framework of the PSR techniques) sup- 
presses possible non-linear distortions, but the experi- 
menter is simultaneously informed about the price for 
it, namely the decreased time resolution which is 
visible in the lower number of values per time interval. 
He may then reflect whether he has chosen the proper 
frequency or/and underlying heating rate to investi- 
gate a certain process. 

It has furthermore been demonstrated, that numer- 
ical calculations can be a powerful tool to test different 
models and their influence on the measured signal and 
the evaluated results. This is especially significant in 
cases, where a certain process produces non-linear 
distortions of the heat-flow rate signal. 
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